Class-specific weighting for Markov random field estimation: Application to medical image segmentation

نویسندگان

  • James Monaco
  • Anant Madabhushi
چکیده

Many estimation tasks require Bayesian classifiers capable of adjusting their performance (e.g. sensitivity/specificity). In situations where the optimal classification decision can be identified by an exhaustive search over all possible classes, means for adjusting classifier performance, such as probability thresholding or weighting the a posteriori probabilities, are well established. Unfortunately, analogous methods compatible with Markov random fields (i.e. large collections of dependent random variables) are noticeably absent from the literature. Consequently, most Markov random field (MRF) based classification systems typically restrict their performance to a single, static operating point (i.e. a paired sensitivity/specificity). To address this deficiency, we previously introduced an extension of maximum posterior marginals (MPM) estimation that allows certain classes to be weighted more heavily than others, thus providing a means for varying classifier performance. However, this extension is not appropriate for the more popular maximum a posteriori (MAP) estimation. Thus, a strategy for varying the performance of MAP estimators is still needed. Such a strategy is essential for several reasons: (1) the MAP cost function may be more appropriate in certain classification tasks than the MPM cost function, (2) the literature provides a surfeit of MAP estimation implementations, several of which are considerably faster than the typical Markov Chain Monte Carlo methods used for MPM, and (3) MAP estimation is used far more often than MPM. Consequently, in this paper we introduce multiplicative weighted MAP (MWMAP) estimation-achieved via the incorporation of multiplicative weights into the MAP cost function-which allows certain classes to be preferred over others. This creates a natural bias for specific classes, and consequently a means for adjusting classifier performance. Similarly, we show how this multiplicative weighting strategy can be applied to the MPM cost function (in place of the strategy we presented previously), yielding multiplicative weighted MPM (MWMPM) estimation. Furthermore, we describe how MWMAP and MWMPM can be implemented using adaptations of current estimation strategies such as iterated conditional modes and MPM Monte Carlo. To illustrate these implementations, we first integrate them into two separate MRF-based classification systems for detecting carcinoma of the prostate (CaP) on (1) digitized histological sections from radical prostatectomies and (2) T2-weighted 4 Tesla ex vivo prostate MRI. To highlight the extensibility of MWMAP and MWMPM to estimation tasks involving more than two classes, we also incorporate these estimation criteria into a MRF-based classifier used to segment synthetic brain MR images. In the context of these tasks, we show how our novel estimation criteria can be used to arbitrarily adjust the sensitivities of these systems, yielding receiver operator characteristic curves (and surfaces).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images

ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that                                                      facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image analysis

دوره 16 8  شماره 

صفحات  -

تاریخ انتشار 2012